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a b s t r a c t

Quality control of cacao beans is a significant issue in the chocolate industry. In this report, we describe
how moisture damage to cacao beans alters the volatile chemical signature of the beans in a way that can
be tracked quantitatively over time. The chemical signature of the beans is monitored via sampling the
headspace of the vapor above a given bean sample. Headspace vapor sampled with solid-phase micro-
extraction (SPME) was detected and analyzed with comprehensive two-dimensional gas chromatography
combined with time-of-flight mass spectrometry (GC × GC–TOFMS). Cacao beans from six geographical
C × GC–TOFMS
hemometrics
acao
uality control
hocolate
ood safety

origins (Costa Rica, Ghana, Ivory Coast, Venezuela, Ecuador, and Panama) were analyzed. Twenty-nine
analytes that change in concentration levels via the time-dependent moisture damage process were
measured using chemometric software. Biomarker analytes that were independent of geographical ori-
gin were found. Furthermore, prediction algorithms were used to demonstrate that moisture damage
could be verified before there were visible signs of mold by analyzing subsets of the 29 analytes. Thus, a
quantitative approach to quality screening related to the identification of moisture damage in the absence

ed.
of visible mold is present

. Introduction

Quality control and food safety are critical concerns of food
anufacturers, governments and consumers that have especially

ained attention with a number of food borne illness outbreaks in
ecent years. Because of the processing in cacao bean manufactur-
ng, including heat treatment and the removal of excess moisture,
food borne illness from chocolate products is comparatively less

ikely, but the cocoa, candy and chocolate industry still faces the
ame challenge of ensuring that raw materials, including cacao
eans, are of high quality and safe. Cacao beans are spontaneously
ermented seeds, and as such are subject to a high level of variability
epending on growing conditions, genetics, postharvest fermenta-
ion and drying of the cocoa beans prior to shipment or handling.
his variability can have a large impact on the finished chocolate

roduct, so it is important to be able to determine if beans are prop-
rly fermented, of high quality, and lacking defects. In addition
o trying to distinguish properly fermented beans and maintain

high quality raw material, there are also the food safety con-
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cerns. There is the potential for a variety of moisture damage related
chemical processes occurring due to high humidity, etc., that can
result in mold colonization and/or microbial growth during stor-
age and transport, or the unintentional inclusion of other chemical
alterations (or adulterants) to the raw material itself. While the
presence of chemical degradation products due to moisture dam-
age does not always indicate an unsafe product [1], it can often
introduce unpleasant off-flavors in the finished chocolate product.
Thus, moisture damage of cacao beans is both a food safety and
quality control concern for this industry.

The current quality control methodology used for monitoring
cacao is quite subjective and limited in its ability to quantify bean
quality. Typically, a “cut-test” is performed on 50–100 (or more)
representative beans. Beans are cut into half to expose the core for
examination so that the color, which is an indicator of the state
of fermentation, can be observed. Additionally, a small sample of
beans is often roasted and ground for a taste test. Though cut-
test results are generally reproducible with a significant margin

of error, the results of taste tests are much harder to agree upon
and communicate. Given that these methods are the current state-
of-the-art, a more reliable and quantitative methodology would be
quite useful in this industry. In particular, a method to ascertain
the likely emergence and presence of chemical products due to

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:synovec@chem.washington.edu
dx.doi.org/10.1016/j.chroma.2010.01.069
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oisture damage could be very useful as this is a common spoilage
echanism. In addition, a method that could also identify toxic con-

aminants or adulterants during the same measurement procedure
ould improve product safety.

It is known that flavor and product quality are closely associated
ith the volatile profile of chocolate [2,3]. In order to improve the
nished product, it would be useful to gain an understanding of
ow compounds in raw cacao beans are indicative of a high quality
hocolate bar. Many chemical alteration processes, including mold,
ay also have a volatile profile that could possibly be detected.

ecause many of the compounds that do relate to the odor and taste
f chocolate are volatile compounds, techniques that sample the
eadspace above a cacao bean sample are ideally suited for routine
onitoring. Headspace solid-phase micro-extraction (HS-SPME) is
sampling technique that isolates volatile and semi-volatile com-
ounds from a headspace gas sample by collecting the analytes onto
coated fiber [4]. We have recently reported implementations of

his technique to cacao beans [5] and it has also been shown effec-
ive on cocoa powder [6]. The sampling method can be paired with
omprehensive two-dimensional gas chromatography coupled to
ime-of-flight mass spectrometry (GC × GC–TOFMS) for separation
nd detection of the complex sample types (quantitative chemi-
al signatures). This powerful analytical technique separates the
omplex sample into two dimensions by combining two columns
ith complementary stationary phases [7–12]. The combination of
C × GC with TOFMS detection has been successful at separating
nd detecting many complex sample types [13–26].

Implementation of GC × GC–TOFMS instrumental methodology
onverts complex sample types to complex raw data. Chemometric
echniques are essential for extracting useful information from the
omplex data [27]. One common goal, in hypothesis driven studies
uch as this, is to identify features (i.e., analytes) that offer chemi-
al selectivity to confidently distinguish the sample types. One such
pproach for identifying these analytes of interest is the Fisher Ratio
F-Ratio) algorithm [23]. This algorithm finds class-type distin-
uishing compounds, in the presence of biological variation, which
ecome the focus for further investigation. Parallel Factor Analy-
is (PARAFAC) is another chemometric algorithm that can be used
o mathematically resolve analyte(s) of interest from background
oise and overlapping interferences (other compounds) thus pro-
iding quantitative information [28–31]. Further comparison of the
amples can be made using pattern recognition and regression
nalysis techniques.

We previously observed dramatic quantifiable differences in the
olatile profile of cacao beans depending on moisture damage relat-
ng to the presence or absence of surface mold [5]. By the time

old is visible, however, a simple visual inspection would make it
uite clear that the beans have been compromised without a need
or sampling the headspace analytes. For routine quality screen-
ng, it would be more useful to quantitatively detect changes in the
eadspace analytes that indicate moisture damage prior to visible
old. As mold is both a food safety and quality control concern,

his would be an important capability. In this study, we have mon-
tored the changes that occur in the headspace analytes as beans
eteriorate from no visible mold to essentially a 100% surface mold
overage. This time course data was determined for cacao beans
rom six geographical origins in order to identify consistent chem-
cal changes related to food safety and bean quality that may be
rigin independent (i.e., independent of bean variety). The specific
ompounds that relate to the origin-independent chemical changes
ould potentially be used as routine biomarkers for moisture dam-

ge. Cacao beans from six origins were intentionally subjected to
oisture damage and sampled over the course of approximately
week. Essentially, the chemical composition of the bean surface

hanges due to the moisture damage process, and the volatile and
emi-volatile components provide a chemical signature that can
r. A 1217 (2010) 1963–1970

be readily sampled using HS-SPME. Thus, HS-SPME was used in
conjunction with GC × GC–TOFMS for data collection. Class dis-
tinguishing analytes were located with F-Ratio analysis and then
quantified with PARAFAC. These results were further compared
with principal component analysis (PCA) and various regression
techniques (e.g., CART and random forests) in order to demon-
strate that moisture damage could be detected prior to visible mold
growth, hence to provide predictive capability in a timely fashion.

2. Experimental

2.1. Sample preparation

Cacao beans from six geographical origins (Costa Rica, Ghana,
Ivory Coast, Venezuela, Ecuador, and Panama) were acquired by
Theo Chocolate (Seattle, WA, USA). A stock sample of raw beans
from each origin was stored under cool and dry conditions in
order to preserve the bean quality prior to assessing the impact
of moisture damage, defined as 0% mold coverage. Filtered water
was added to a subset of these stock samples and the beans were
allowed to mold to what visually appeared to be total external
coverage (100% coverage). This provided for reference, stock bean
samples at 0% and 100% coverage. These qualitative definitions are
indicative of what can be observed by eye without microscopic
magnification (as in a field assessment), thus not representative of
microscopic mold spores that may be present. For each geographi-
cal origin, 18 representative beans were taken from the 0% coverage
stock sample and placed in sealable plastic bag to which 10 ml of
filtered water was added. To ensure that the total time with added
moisture was consistent for each sample at the time of analysis, the
addition of water was staggered by 1 h for each origin to compen-
sate for analysis time. The beans were stored at room temperature
and samples, i.e., three representative beans per sample, were ana-
lyzed from the 0% coverage stock and then from the sealable bag for
a total of 7 time points (0, 1, 2, 3, 4, 5, and 6 days) over the course
of the moisture damage process. One additional replicate from the
100% coverage stock samples (at ∼1 month) was also collected for
beans from each origin.

2.2. Solid-phase micro-extraction (SPME)

The SPME procedure previously described was used for this
study [5]. Briefly, a 65 �m PDMS/DVB SPME fiber (Supelco, PA, USA)
served to preconcentrate headspace analytes above a cacao bean
sample. The fiber was conditioned at 250 ◦C for 30 min prior to
each sample extraction. At the given time (0, 1, 2, 3, 4, 5, and 6
days), three cacao beans were removed from the sealable bag of a
particular origin and sealed together in a new 15 ml SPME vial. The
origins were sampled in the same order that water was added so
each bean sample was analyzed at the same total time since the
water had been added. For the sample preparation via HS-SPME,
each sample was heated in a water bath to 60 ◦C for 15 min, after
which the SPME fiber was exposed to the headspace for 10 min.
After being extracted, beans were not returned to the bag as the
extraction alters the bean.

2.3. GC instrument parameters

GC instrument parameters were also maintained as previously
described [5]. A GC × GC–TOFMS consisting of an Agilent 6890N

GC (Agilent Technologies, CA, USA) and a thermal modulator (4D
upgrade, LECO, St. Joseph, MI, USA) paired with a Pegasus III TOFMS
(LECO, St. Joseph, MI, USA) was used to separate the HS-SPME
sampled analytes. The SPME fiber was introduced to the GC inlet,
maintained at 250 ◦C with a constant He flow of 1 ml/min, for
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min as the injection. A GC × GC column arrangement of non-
olar (20 m × 250 �m i.d. × 0.5 �m RTX-5MS (Restek, PA, USA)) to
olar (2 m × 180 �m i.d. × 0.2 �m RTX-200MS (Restek, PA, USA))
as implemented. For the first 5 min, during injection, the first

olumn was held at 40 ◦C and the second column at 50 ◦C. Both
olumns then followed a temperature program that ramped at a
ate of 8 ◦C/min from 40 ◦C to 140 ◦C for the first column and 50 ◦C
o 150 ◦C for the second column. The rate was then increased to
0 ◦C/min to a final temperature of 250 ◦C for the first column and
60 ◦C for the second, where the columns were held constant for
n additional min. The modulator temperature was maintained
0 ◦C higher than the temperature of column one and transferred
he effluent every 1.5 s. The transfer line was held at 280 ◦C and
he TOFMS ion source at 250 ◦C. Mass channels 40–250 m/z were
ollected and stored at a rate of 100 spectra/s. Three beans were
ombined together and analyzed at each time point (7 plus an addi-
ional 100% coverage stock sample) for each origin (6 total) for a
otal of 48 chromatographic injections. Based on our prior study
5], replicates at each time point and bean origin were not deemed
ecessary, as will be further discussed.

.4. Data analysis

Raw chromatographic data were collected using LECO Chro-
aTOF software v 3.32 (LECO, St. Joseph, MI, USA). Data were

xported to Matlab for Fisher Ratio (F-Ratio) calculations. The data
ollected from time 0 days (i.e., 0% coverage) and from the 100%
overage stock samples from each origin were used as the two
ample class-types for F-Ratio analysis [23] in order to find the
ompounds that were up or down regulated due to the mois-
ure damage process. F-Ratios were calculated both by weighting
o chromatographic intensity (weighted) and without weight-
ng (unweighted). At the top locations identified through F-Ratio
nalysis, preliminary analyte identification was determined with
hromaTOF software via searching the mass spectra from the
hromatograms against the National Institute of Standards and
echnology (NIST) library. An in-house developed target-analyte
arallel Factor Analysis (PARAFAC) Graphical User Interface (GUI)
as used to mathematically resolve the pure peak profile and mass

pectra for quantitative purposes [30]. Quantitative information
as obtained across the complete time course for all bean origins.

.5. Data interpretation

Principal Component Analysis (PCA) was employed as a data
omparison tool as we have previously demonstrated with
etabolomics data [19,22]. Each analyte was loaded as a sample
ith the time course information across each origin as the variables.

CA was then calculated using preprocessing of mean centered
ata. Additional modeling software was used for regression meth-
ds. For CART and random forests, the R statistical software package
as employed [32]. The standard implementations in WEKA ver-

ion 3.5.7 [33] were applied for all other regression methods.
or CART, the rpart library [34] was used and, following stan-
ard procedures, a complexity parameter of cp = 0.05 was selected.
or random forests, the random forest library [35] was used, and
odels with the default of 500 trees were trained. 10-fold cross-

alidation [36] for these two methods was coded in-house and
esults of the mean and standard deviation from repeating the
hole validation 10 times are reported herein. For the methods run

n WEKA, default parameter settings were used in all cases except

or the Radial Basis Function Network. For that model, eight basis
unctions were selected (instead of the default two), one to repre-
ent each time data point. WEKA performs 10-fold cross-validation
s a default testing method. The coefficient of determination (R2

alue) is a measure of the fraction of variation in a dependent
Fig. 1. This picture indicates beans at various stages of moisture damage, visibly
indicated by mold, from 0 days to 100% coverage.

variable that is explained by a model [37]. In all cases here, it
was calculated as the square of the Pearson correlation coefficient
between the prediction by the models and the actual predicted
variable value.

3. Results and discussion

Beans from various geographical origins were studied: Costa
Rica, Ghana, Ivory Coast, Venezuela, Panama, and Ecuador. Beans
were sampled and monitored 7 times over the course of approxi-
mately 1 week (0 days to 6 days by a 1-day interval), as well as one
additional measurement from a stock molded sample at ∼1 month
of moisture damage (i.e., 100% coverage) for a total of 8 data points
across the time course moisture damage process for each origin
class. Again, the expression of the moisture damage was visual-
ized by the appearance of mold, while other less visible chemical
degradation processes were also occurring. There was some vari-
ability in the appearance and rate of mold growth, but all beans
reached what appeared to be 100% coverage by the end of the 6-
day period. Beans did not convert from an absence of visible mold
to 100% coverage from 1 day to the next. Instead, mold appeared in
a localized spot and gradually grew to cover the entire bean. Fig. 1
illustrates a recreation of the moisture damage process via mold
expression. As there was some variability, the most representa-
tive beans were sampled at each time point. We have previously
observed only small bean-to-bean variability for a given origin [5].
We evaluated the reproducibility of the extraction and injection of
5 separate beans from the same origin for 8 samples (4 origins at
2 moisture conditions each) and observed an average %RSD of only
16.2% in the TIC (acceptable for biological variation). However, to
compensate for the small amount of variability that may be present
between beans, three beans were selected and sampled together for
each analysis. In essence, the samples were averaged prior to anal-
ysis and information on the average headspace of three beans was
provided at each time point.

SPME sampling coupled with GC × GC–TOFMS separation and
detection effectively converted these complex sample types into
complex data. Representative 2D TIC chromatograms of the begin-
ning and the end of the moisture damage process are shown in
Fig. 2, in which wrap around can be observed. This could be cor-
rected by making changes to the modulation period, however the
wrap around more fully utilizes the 2D peak capacity, and is not
problematic for software analysis. It is possible to visibly identify
some of the chemical signature differences between the beginning
and the end of the moisture damage process as shown in the 2D
TIC separations in Fig. 2. However, chemometric techniques are
more useful than visualization to more thoroughly probe this com-
plex data for useful information. The F-Ratio algorithm can be used
to find analytes that differ between classes; in this case between

the unmolded samples and those with 100% coverage, across all
bean origin classes. All of the origins were included for each sam-
ple class so that any origin differences would be counted as within
class variation and the differences identified would likely be ori-
gin independent. The F-Ratio algorithm can be calculated in both
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Table 1
F-Ratio results including the combined list of the top 20 analytes found by weighted and unweighted F-Ratio analysis. The calculated F-Ratios are provided in the columns
F-Ratio W (weighted) and F-Ratio U (unweighted) and the order of each as Rank W and Rank U. The analyte identification (determined through mass spectral matching) is
listed with observed retention times in s (tR1 and tR2) and match value to library spectra.

Rank W Rank U F-Ratio W F-Ratio U tR1 tR2 Analyte MV

1 7 1.60E+08 4.00E+03 156 0.91 Acetic acid 970
2 2 1.40E+08 7.60E+03 898.5 0.58 Tetramethyl-pyrazine 901
3 7.30E+07 94.5 1.45 Carbon dioxide 992
4 14 1.50E+07 2.40E+03 151.5 0.61 Methyl butenol 899
5 1.30E+07 1125 0.10 Unknown
6 1 1.20E+07 9.30E+03 1089 0.46 Nonanoic acid 844
7 6 1.20E+07 5.20E+03 754.5 0.74 4-Hydroxy-benzenesulfonic acid 928
8 5 1.00E+07 5.20E+03 543 1.02 3-Methyl-butanoic acid 895
9 9.60E+06 1156.5 0.05 2,6,10-Trimethyl-dodecane 900

10 4 9.20E+06 5.60E+03 751.5 0.83 Hexanoic acid 913
11 9.00E+06 423 0.15 2,3-Butanediol 932
12 8.70E+06 441 0.05 2,3-Butanediol, [S-(R*,R*)] 940
13 7.20E+06 916.5 1.02 Nonanal 801
14 5.70E+06 820.5 0.67 2-Ethyl-1-hexanol 921
15 3 5.70E+06 5.70E+03 873 0.76 Heptanoic acid 876
16 5.60E+06 1095 0.19 2,3,7-Trimethyl-octane 894
17 11 5.20E+06 2.60E+03 787.5 0.74 Trimethyl-pyrazine 920
18 4.40E+06 1167 0.04 Hexadecane 924
19 3.70E+06 1203 1.50 Mercaptoacetic acid 750
20 3.50E+06 1114.5 0.11 Pentadecane 919

8 3.80E+03 1090.5 0.82 2-Decenal 879
9 3.00E+03 562.5 0.85 2-Methyl-butanoic acid 785

10 2.80E+03 1068 0.57 Unknown
12 2.50E+03 1089 0.67 2-Phenylethyl ester acetic acid 887
13 2.50E+03 1056 0.65 4-(Prop-2-enoyloxy) octane 877
15 2.20E+03 897 0.76 �,�-Dimethyl-benzenemethanol 817
16 2.20E+03 436.5 1.10 Butanoic acid 860

988.5
075.5
318.5
699
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17 2.20E+03
18 2.10E+03 1
19 1.90E+03 1
20 1.80E+03

weighted and unweighted mode. In the weighted mode, the cal-
ulated F-Ratio is scaled with the analyte signal. This is a benefit
n that false positive noise hits can be reduced, but it may also
ver emphasize the analytes that have the largest intensities. The
nweighted mode does no analyte scaling so small peaks with large
ifferences are not under represented in the results. As a long term
oal is to select analytes for routine quantitative analysis that are
ndicators of food quality and safety, it may be beneficial to screen
or more intense, thus easier to detect, analytes with the weighted
pproach. However, at this discovery stage, the inclusion of less
ntense analytes is also worthwhile as part of the chemical finger-
rint for the determination of pattern changes, so F-Ratios were
alculated with both the weighted and unweighted approaches.
combined list was compiled of the top analytes determined by

ach approach, with results provided in Table 1. Both the weighted
nd unweighted F-Ratio ranks are listed. There is overlap between
he two lists with nearly half (nine analytes) of the analytes on
ach list also found with the other method. Analyte identifica-
ion was determined through matching to library standards with

atch values provided to indicate the confidence in the identifi-
ation. Analytes that matched below 700 are listed as unknowns;
ach approach found one unknown analyte in the top 20. The com-
ined list of the top 20 analytes resulted in a total of 29 identified
through mass spectral matching) analytes that were quantified
or further investigation. Many of these analyte compounds are
outinely observed in the sampling of cacao beans [2,3]. Since the
rimary goal of this study is to determine if a set of analytes can be
sed as a chemical fingerprint to predict moisture damage, it was
ot deemed necessary at this stage to more rigorously identify the

pecific compounds via retention time matching with standards. As
hese analytes have potential of being origin-independent markers
f moisture damage, retention time verification for a more confi-
ent identification in conjunction with the mass spectral matching
ay be warranted for routine screening.
0.71 Octanoic acid 855
0.54 2-Ethyl-2,3,3-trimethyl-butanoic acid 734
0.35 Isobutyl phthalate 806
0.89 4-Methyl-pentanoic acid 822

Quantitative information was determined for each of the 29 ana-
lytes across the entire time course by utilizing the target PARAFAC
algorithm [30]. This allowed for the determination of relative
changes over the moisture damage process per analyte. For ease
of visualization, the PARAFAC signal volumes were normalized to
the mean for each particular analyte and plotted on a single heat
map, shown in Fig. 3. The plot contains data for the entire time
course study as well as the additional 100% coverage data point.
The time course trends for many of these analytes track with the
appearance of mold and most of the trends appeared to be origin
independent. This suggests that these changes are due to the mois-
ture damage rather than random bean-to-bean or origin to origin
variability. The additional 100% coverage data point (∼1 month)
follows closely with the final time point (6 days) in the time course
data providing an additional indication of consistency. Further nor-
malization could be done, if needed, to account for extraction and
injection variability with the introduction of an internal standard.
The sample mass (sum of all three beans) could also be corrected for
with normalization, if necessary. However, the average mass of the
three beans for all 48 injections in this study was sufficiently sim-
ilar for this bioanalytical study (3.97 g with 21% RSD.) If this were
not the case, normalization should be performed to account for the
variability.

As shown in Fig. 3, several analytes track with the appearance
of mold. Some analytes increase after moisture damage and others
decrease. There appears to be a complex relationship between a
large set of analytes with many correlated trends. We have previ-
ously found that PCA can be employed as a data comparison tool
to summarize the relationship between specific analytes and the

samples [19,22]. In this study, PCA is being applied in a super-
vised mode, using PARAFAC signal volume data identified by the
F-Ratio analysis. The PARAFAC signal volume data was loaded for
PCA analysis with each analyte as a sample and the time course
and origin information contained as the variables. This approach
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Fig. 2. Raw data from the Costa Rica sample. Differences can be identified visually
between data point 0 (0 days) and data point 7 (1 month, defined as 100% coverage).

Fig. 3. PARAFAC signal volumes for all 29 analytes. Time course information can be discer
month, i.e., 100% coverage) for each origin. CR: Costa Rica, G: Ghana, IC: Ivory Coast, V: V
the same order as Table 1.
r. A 1217 (2010) 1963–1970 1967

to PCA provides information on which analytes are most similar to
one another in the context of the time course in the scores plot and
in the loadings, which time points are similar to each other in the
context of these 29 analytes. Initially PCA was performed on each
origin independently as can be seen in Fig. 4A–F. In all instances,
the first 2 PCs capture at least 91.1% of the variance and as much as
98.6%. The variables in this case relate to a time course process, so it
is not surprising that the loadings form a continuum from one end
to the other. For most origins, there is a fairly distinct transition in
the middle of the continuum that roughly coincides with a qualita-
tive observation of significant mold growth. For example, for the E
sample (Ecuador) the transition point was 3 days.

In addition to looking at PCA results for each origin indepen-
dently, PCA was also performed on all origins simultaneously. The
results of PCA on all origins combined are provided in Fig. 5. In
Fig. 5A, the first PC is plot against the sample number. The sam-
ples are first ordered by origin and then over the 8 data points
(time course, plus 100% coverage from stock molded.) PC1 cap-
tures 53.9% of the variance and is primarily an indicator of the
differences between the beans when they are unmolded. Nearly
all of the time points correlated at or approaching 100% coverage
have low PC1 loadings. Fig. 5B shows the second PC plot against
the sample numbers. PC2 captures 41.0% of the total variance and
appears to correlate to the variation that occurs after the samples
have visible mold growth. In this case, nearly all of the initial time
points have very low loadings on PC2 while the later time points
have larger PC2 loadings. The first 2 PCs combine to capture nearly
95% of the total variance in the data, which is similar to the vari-
ance captured when each origin was calculated independently, and
are plotted against each other in Fig. 5C. The differences identified
between beans with PCA are related to the presence or absence of
mold and not the origin of the bean. Crossing from positive to neg-
ative on PC1 primarily coincides with the presence or absence of
visible mold with PC1 showing the variations between the initial
time points and PC2 showing the variations between the later time

points. The time point at which mold first became visible by eye
is indicated in the Fig. 5C scores plot and occurs close to the (0, 0)
coordinate for most origins. This demonstrates that by using PCA
with this set of analytes, it is possible to track the appearance of
moisture damage.

ned. The columns are organized from data point 0 (0 days) through data point 7 (1
enezuela, P: Panama, and E: Ecuador. Each row represents an analyte (labeled) in
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colinearity arises because many of the analyte levels are not inde-
pendent, but vary together due to their chemical-reactive and/or
metabolic relationships. PLS is better suited to handle this problem
and does much better, but it still does not reach the performance
of other models. This is likely because its linear model cannot ade-

Table 2
Coefficients of determination are listed for a selection of machine-learning regres-
sion methods.

Regression model R2 from 10-fold cross-validation.
Mean (SD) from 10 runs

Linear regression 0.499 (0.12)
Partial least squares regression 0.608 (0.10)
Gaussian processes 0.661 (0.11)
Radial basis function network 0.671 (0.08)
1-Nearest neighbour 0.737 (0.09)
ig. 4. PCA on each origin independently. (A) Costa Rica, (B) Ghana, (C) Ivory Coast
-month time point is labeled as data point 7 (defined as 100% coverage).

While in Fig. 5A–C it is possible to determine whether or not
bean is visibly molded, the precise order of the time points is

ot always discernable with PCA in either the individual origins
r the combined origins. For this reason, machine-learning tech-
iques were employed to determine if the data could be modeled
o as to predict the amount of time since moisture damage, which
ould allow for the detection of moisture damage prior to visible
old growth and aid in screening for bean quality. In order to quan-

ify our ability to detect moisture damage from measurements of
he volatile headspace analytes alone, a regression analysis was
erformed on the data. We regress on the data point (number of
ays after moisture damage 0–6 and the additional 100% cover-
ge point) as a function of 28 of the 29 analytes listed in Table 1.
he carbon dioxide level was not included as a predictor variable
n the regression analysis because it is not regarded as a suitable
andidate for in-field detection systems as it may be affected by
umerous external conditions.
A selection of ten machine-learning regression methods were
pplied to the complete training data, and 10-fold cross-validation
as used to estimate generalization performance with a sum-
ary of the results shown in Table 2. Based on these data, linear

egression using the complete set of variables was found to be the
enezuela, (E) Panama, and (F) Ecuador. The days, 0–6, are labeled as such, and the

least accurate model. This is almost certainly due to significant
multi-colinearity in the data, which confounds this technique. The
SMO-support vector regression 0.743 (0.12)
Random subspaces 0.702 (0.07)
Random forest 0.861 (0.11)
M5 regression tree 0.705 (0.10)
CART 0.702 (0.11)
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Fig. 5. PCA on all origins combined. (A) PC1 is plotted versus sample number with
the samples in the same order as Fig. 3. (B) PC2 is plotted versus sample number.
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dom forest models (see Table 2). Additionally, there seem to be
ithin each origin, the data points are organized from data point 0 (0 days) through
ata point 7 (1 month, i.e., 100% coverage). (C) PC1 is plotted versus PC2. CR: Costa
ica, G: Ghana, IC: Ivory Coast, V: Venezuela, P: Panama, and E: Ecuador.

uately capture the non-linear and even non-monotonic changes
bserved in the analyte levels over the time course. There are
wo main groups of learning models that do substantially bet-
er at modeling this data. The nearest-neighbor and radial basis
unction methods both use all variables without weighting them,
nd the predictions are based largely on the most proximal data
oints in this unweighted space. Such methods are not hindered
y non-linearity, a large number of variables, or multi-colinearity.
he random forest, random subspaces, CART and M5 regression
ree methods all use rules arranged in tree structures, which also

nables them to model non-linear data more effectively. Also, ran-
om subspaces and random forests pool a large number of trees
ogether, allowing them to make use of all the variables without
ver-fitting, while CART and M5 use only a selection of variables.
Fig. 6. Predictions of a random forest regression model. The x-axis displays the
actual time points, from 0 days (data point 0) through 1 month, i.e., 100% coverage
(data point 7).

Overall, the high R2 values of the best models indicate that the
headspace data contain sufficient information to detect not just
the presence of moisture damage, but also to determine when the
contamination occurred. A plot of the predictions made by a ran-
dom forest model, which proved to be the best prediction method,
is shown in Fig. 6. We can see from this plot that it is particularly
good at accurately differentiating between no contamination and
each of the first 2 or 3 days of contamination. This is the time-frame
where there is no visible mold and visual inspection of cacao beans
will not detect moisture damage. The ability to quantitatively dis-
tinguish between these time points indicates a clear potential for
the development of early-warning systems related to food safety
and quality issues.

The plot in Fig. 6 also shows that no bean variety has consistently
higher or lower predictions than the main trend, suggesting that the
varieties behave largely similarly. This implies that these changes
are origin independent and is consistent with what was observed
in the PARAFAC signal volumes shown in Fig. 3 and the combined
origin PCA results shown in Fig. 5. We further tested this hypothesis
by retraining the random forest model on five of the bean varieties
and testing on the sixth, arguably the one with the largest appar-
ent differences, the Venezuela variety. The R2 value obtained on this
test was still high and averaged around 0.7 (10 runs). The exper-
iment was then repeated using the nearest-neighbor classifier (1
run because it is deterministic) which gave an R2 value of 0.788.
These values are less reliable than those quoted in Table 2, because
they are based on a test set of just 8 data points, but there is no indi-
cation from our data that different bean varieties cannot be treated
similarly.

All the regression methods reported above were trained on all
variables. However, one might be interested in using only a subset
of the variables. This would be especially the case for the develop-
ment of more cost-effective measurement and detection systems
for in-field applications. The CART and M5 decision tree methods
implicitly perform a selection of variables during the training pro-
cess, and the final models use only these variables. Fig. 7 shows
a single CART model trained in the same way as those that were
cross-validated and reported in Table 2. It uses only six of the avail-
able variables to make the predictions and performs at a relatively
high level compared to the much larger nearest-neighbor and ran-
numerous options in which subsets of variables can be used to still
arrive at accurate predictions. Models trained on ten different ran-
dom selections of k variables were assessed, at a variety of k values
for the random forest method. Certain combinations of variables
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Fig. 7. CART tree that predicts the number of days since moisture damage. At each
node, the decision rule displayed (top line) indicates which branch to follow (left or
right) based on the value of the variable named. The % of total deviance explained
by the rule is shown as the third value on the second line. The number of observa-
tions entering a node and their mean value are the first two values on the second
line, respectively. The leaf nodes indicate the mean value of the observations there,
and their number. The model shown splits the data into seven categories based on
six explanatory variables (analytes). It does not manage to separate days 5 and 6,
grouping eleven observations together, but makes few other errors. See Table 2 for
the cross-validated R2 performance.

Table 3
R2 values (under 10-fold cross-validation) are given for random forest models, based
on selections of k variables, with k ranging from 10 down to 2. Ten independent and
entirely random selections at each value of k were done; the table summarizes the
distribution of results obtained.

Number of variables, k
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[33] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Tech-
R2 Min 0.67 0.64 0.62 0.5 0.03
Median 0.85 0.76 0.7 0.7 0.5
Max 0.9 0.79 0.85 0.8 0.71

ive better performance than others, but accurate models based on
nly three or four variable combinations exist and are not difficult
o find, as shown in Table 3. We have also run more direct variable-
election techniques, but these do not give a consistent list of top
redictor variables, such that they could be presented as definitive.
ather, it is found that many different subsets of the variables are

nformative enough to make accurate (cross-validated) predictions.
s seen in Table 3, more than half the random forest models based
n only three variables give R2 values of 0.7 or better.

The success of the various prediction algorithms with all of the
ata combined, or with just a subset of the analytes, shows that it

s possible to determine whether moisture damage has occurred
efore there are visible signs of mold. The precise time since dam-
ge may differ due to many environmental factors (i.e., humidity,
xposure to elements, etc.), which would be important to further
nvestigate prior to any implementation as a field device. How-
ver, there seem to be numerous origin-independent markers that
ndicate whether or not the moisture damage has occurred.
. Conclusions

We have shown that moisture damage to cacao beans alters the
olatile chemical signature in a way that can be tracked over time.

[
[
[
[

r. A 1217 (2010) 1963–1970

These headspace vapor changes can be sampled with HS-SPME and
detected and analyzed with GC × GC–TOFMS. A number of ana-
lytes that change in concentration levels via the moisture damage
process were determined using the F-Ratio algorithm and quanti-
fied with the PARAFAC algorithm. It is possible to use prediction
algorithms to determine whether moisture damage has occurred
before there are visible signs of mold by analyzing subsets of the
analytes.
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